\(\int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [664]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 280 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {5 c^3 d^3 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{8 \sqrt {g} (c d f-a e g)^{7/2}} \]

[Out]

5/8*c^3*d^3*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/(-a*e*g
+c*d*f)^(7/2)/g^(1/2)+1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)/(g*x+f)^3/(e*x+d)^(1/2)+5/12*
c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^2/(g*x+f)^2/(e*x+d)^(1/2)+5/8*c^2*d^2*(a*d*e+(a*e^2
+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^3/(g*x+f)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 280, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {886, 888, 211} \[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {5 c^3 d^3 \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{8 \sqrt {g} (c d f-a e g)^{7/2}}+\frac {5 c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 \sqrt {d+e x} (f+g x) (c d f-a e g)^3}+\frac {5 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)^2}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 \sqrt {d+e x} (f+g x)^3 (c d f-a e g)} \]

[In]

Int[Sqrt[d + e*x]/((f + g*x)^4*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(3*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)^3) + (5*c*d*Sqrt[a*d*e
+ (c*d^2 + a*e^2)*x + c*d*e*x^2])/(12*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*(f + g*x)^2) + (5*c^2*d^2*Sqrt[a*d*e + (
c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)) + (5*c^3*d^3*ArcTan[(Sqrt[g]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(8*Sqrt[g]*(c*d*f - a*e*g)^(7/2
))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 886

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))),
 x] - Dist[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g))), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c
*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {(5 c d) \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{6 (c d f-a e g)} \\ & = \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {\left (5 c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 (c d f-a e g)^2} \\ & = \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {\left (5 c^3 d^3\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 (c d f-a e g)^3} \\ & = \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {\left (5 c^3 d^3 e^2\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{8 (c d f-a e g)^3} \\ & = \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 (c d f-a e g) \sqrt {d+e x} (f+g x)^3}+\frac {5 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)^2}+\frac {5 c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)}+\frac {5 c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{8 \sqrt {g} (c d f-a e g)^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.68 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {c^3 d^3 \sqrt {d+e x} \left (\frac {(a e+c d x) \left (8 a^2 e^2 g^2-2 a c d e g (13 f+5 g x)+c^2 d^2 \left (33 f^2+40 f g x+15 g^2 x^2\right )\right )}{c^3 d^3 (c d f-a e g)^3 (f+g x)^3}+\frac {15 \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{7/2}}\right )}{24 \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[Sqrt[d + e*x]/((f + g*x)^4*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(c^3*d^3*Sqrt[d + e*x]*(((a*e + c*d*x)*(8*a^2*e^2*g^2 - 2*a*c*d*e*g*(13*f + 5*g*x) + c^2*d^2*(33*f^2 + 40*f*g*
x + 15*g^2*x^2)))/(c^3*d^3*(c*d*f - a*e*g)^3*(f + g*x)^3) + (15*Sqrt[a*e + c*d*x]*ArcTan[(Sqrt[g]*Sqrt[a*e + c
*d*x])/Sqrt[c*d*f - a*e*g]])/(Sqrt[g]*(c*d*f - a*e*g)^(7/2))))/(24*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 0.53 (sec) , antiderivative size = 440, normalized size of antiderivative = 1.57

method result size
default \(\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} g^{3} x^{3}+45 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f \,g^{2} x^{2}+45 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f^{2} g x +15 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f^{3}-15 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} g^{2} x^{2}+10 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a c d e \,g^{2} x -40 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} f g x -8 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a^{2} e^{2} g^{2}+26 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, a c d e f g -33 \sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, c^{2} d^{2} f^{2}\right )}{24 \sqrt {e x +d}\, \sqrt {c d x +a e}\, \left (a e g -c d f \right )^{3} \left (g x +f \right )^{3} \sqrt {\left (a e g -c d f \right ) g}}\) \(440\)

[In]

int((e*x+d)^(1/2)/(g*x+f)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/24*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*g^3*x^3+45*a
rctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f*g^2*x^2+45*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c
*d*f)*g)^(1/2))*c^3*d^3*f^2*g*x+15*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f^3-15*(c*d*x+
a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*g^2*x^2+10*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c*d*e*g^2*x-
40*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^2*d^2*f*g*x-8*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a^2*e^2
*g^2+26*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*a*c*d*e*f*g-33*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*c^2
*d^2*f^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/(a*e*g-c*d*f)^3/(g*x+f)^3/((a*e*g-c*d*f)*g)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 993 vs. \(2 (248) = 496\).

Time = 0.67 (sec) , antiderivative size = 2027, normalized size of antiderivative = 7.24 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/48*(15*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3*
d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2
*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a
*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(33*c^3*d^3*f^3*g - 59*a*c^2*d^2*e*f^2*g^2 + 34*a^
2*c*d*e^2*f*g^3 - 8*a^3*e^3*g^4 + 15*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 10*(4*c^3*d^3*f^2*g^2 - 5*a*c^2*d
^2*e*f*g^3 + a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^4*d^5*f^7*g - 4
*a*c^3*d^4*e*f^6*g^2 + 6*a^2*c^2*d^3*e^2*f^5*g^3 - 4*a^3*c*d^2*e^3*f^4*g^4 + a^4*d*e^4*f^3*g^5 + (c^4*d^4*e*f^
4*g^4 - 4*a*c^3*d^3*e^2*f^3*g^5 + 6*a^2*c^2*d^2*e^3*f^2*g^6 - 4*a^3*c*d*e^4*f*g^7 + a^4*e^5*g^8)*x^4 + (3*c^4*
d^4*e*f^5*g^3 + a^4*d*e^4*g^8 + (c^4*d^5 - 12*a*c^3*d^3*e^2)*f^4*g^4 - 2*(2*a*c^3*d^4*e - 9*a^2*c^2*d^2*e^3)*f
^3*g^5 + 6*(a^2*c^2*d^3*e^2 - 2*a^3*c*d*e^4)*f^2*g^6 - (4*a^3*c*d^2*e^3 - 3*a^4*e^5)*f*g^7)*x^3 + 3*(c^4*d^4*e
*f^6*g^2 + a^4*d*e^4*f*g^7 + (c^4*d^5 - 4*a*c^3*d^3*e^2)*f^5*g^3 - 2*(2*a*c^3*d^4*e - 3*a^2*c^2*d^2*e^3)*f^4*g
^4 + 2*(3*a^2*c^2*d^3*e^2 - 2*a^3*c*d*e^4)*f^3*g^5 - (4*a^3*c*d^2*e^3 - a^4*e^5)*f^2*g^6)*x^2 + (c^4*d^4*e*f^7
*g + 3*a^4*d*e^4*f^2*g^6 + (3*c^4*d^5 - 4*a*c^3*d^3*e^2)*f^6*g^2 - 6*(2*a*c^3*d^4*e - a^2*c^2*d^2*e^3)*f^5*g^3
 + 2*(9*a^2*c^2*d^3*e^2 - 2*a^3*c*d*e^4)*f^4*g^4 - (12*a^3*c*d^2*e^3 - a^4*e^5)*f^3*g^5)*x), -1/24*(15*(c^3*d^
3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3*d^4*f*g^2)*x^2 +
(c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x
)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) - (33*c^3*d^3*f^3*g - 5
9*a*c^2*d^2*e*f^2*g^2 + 34*a^2*c*d*e^2*f*g^3 - 8*a^3*e^3*g^4 + 15*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 10*(
4*c^3*d^3*f^2*g^2 - 5*a*c^2*d^2*e*f*g^3 + a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt
(e*x + d))/(c^4*d^5*f^7*g - 4*a*c^3*d^4*e*f^6*g^2 + 6*a^2*c^2*d^3*e^2*f^5*g^3 - 4*a^3*c*d^2*e^3*f^4*g^4 + a^4*
d*e^4*f^3*g^5 + (c^4*d^4*e*f^4*g^4 - 4*a*c^3*d^3*e^2*f^3*g^5 + 6*a^2*c^2*d^2*e^3*f^2*g^6 - 4*a^3*c*d*e^4*f*g^7
 + a^4*e^5*g^8)*x^4 + (3*c^4*d^4*e*f^5*g^3 + a^4*d*e^4*g^8 + (c^4*d^5 - 12*a*c^3*d^3*e^2)*f^4*g^4 - 2*(2*a*c^3
*d^4*e - 9*a^2*c^2*d^2*e^3)*f^3*g^5 + 6*(a^2*c^2*d^3*e^2 - 2*a^3*c*d*e^4)*f^2*g^6 - (4*a^3*c*d^2*e^3 - 3*a^4*e
^5)*f*g^7)*x^3 + 3*(c^4*d^4*e*f^6*g^2 + a^4*d*e^4*f*g^7 + (c^4*d^5 - 4*a*c^3*d^3*e^2)*f^5*g^3 - 2*(2*a*c^3*d^4
*e - 3*a^2*c^2*d^2*e^3)*f^4*g^4 + 2*(3*a^2*c^2*d^3*e^2 - 2*a^3*c*d*e^4)*f^3*g^5 - (4*a^3*c*d^2*e^3 - a^4*e^5)*
f^2*g^6)*x^2 + (c^4*d^4*e*f^7*g + 3*a^4*d*e^4*f^2*g^6 + (3*c^4*d^5 - 4*a*c^3*d^3*e^2)*f^6*g^2 - 6*(2*a*c^3*d^4
*e - a^2*c^2*d^2*e^3)*f^5*g^3 + 2*(9*a^2*c^2*d^3*e^2 - 2*a^3*c*d*e^4)*f^4*g^4 - (12*a^3*c*d^2*e^3 - a^4*e^5)*f
^3*g^5)*x)]

Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\sqrt {d + e x}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )^{4}}\, dx \]

[In]

integrate((e*x+d)**(1/2)/(g*x+f)**4/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)**4), x)

Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int { \frac {\sqrt {e x + d}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}^{4}} \,d x } \]

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^4), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1460 vs. \(2 (248) = 496\).

Time = 0.66 (sec) , antiderivative size = 1460, normalized size of antiderivative = 5.21 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/24*(15*c^3*d^3*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/((c^3*d^3*e^2*f
^3*abs(e) - 3*a*c^2*d^2*e^3*f^2*g*abs(e) + 3*a^2*c*d*e^4*f*g^2*abs(e) - a^3*e^5*g^3*abs(e))*sqrt(c*d*f*g - a*e
*g^2)*e) + (33*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^5*d^5*e^4*f^2 - 66*sqrt((e*x + d)*c*d*e - c*d^2*e + a
*e^3)*a*c^4*d^4*e^5*f*g + 33*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a^2*c^3*d^3*e^6*g^2 + 40*((e*x + d)*c*d*e
 - c*d^2*e + a*e^3)^(3/2)*c^4*d^4*e^2*f*g - 40*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*c^3*d^3*e^3*g^2 + 1
5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*c^3*d^3*g^2)/((c^3*d^3*e^2*f^3*abs(e) - 3*a*c^2*d^2*e^3*f^2*g*abs(
e) + 3*a^2*c*d*e^4*f*g^2*abs(e) - a^3*e^5*g^3*abs(e))*(c*d*e^2*f - a*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^
3)*g)^3))*e^4 - 1/24*(15*c^3*d^3*e^4*f^3*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 45*c^3
*d^4*e^3*f^2*g*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 45*c^3*d^5*e^2*f*g^2*arctan(sqrt
(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 15*c^3*d^6*e*g^3*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d
*f*g - a*e*g^2)*e)) + 33*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^2*d^2*e^3*f^2 - 40*sqrt(-c*d^2*e + a
*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^2*d^3*e^2*f*g - 26*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c*d*e^4*f*
g + 15*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^2*d^4*e*g^2 + 10*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g -
 a*e*g^2)*a*c*d^2*e^3*g^2 + 8*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*e^5*g^2)/(sqrt(c*d*f*g - a*e*
g^2)*c^3*d^3*e^3*f^6*abs(e) - 3*sqrt(c*d*f*g - a*e*g^2)*c^3*d^4*e^2*f^5*g*abs(e) - 3*sqrt(c*d*f*g - a*e*g^2)*a
*c^2*d^2*e^4*f^5*g*abs(e) + 3*sqrt(c*d*f*g - a*e*g^2)*c^3*d^5*e*f^4*g^2*abs(e) + 9*sqrt(c*d*f*g - a*e*g^2)*a*c
^2*d^3*e^3*f^4*g^2*abs(e) + 3*sqrt(c*d*f*g - a*e*g^2)*a^2*c*d*e^5*f^4*g^2*abs(e) - sqrt(c*d*f*g - a*e*g^2)*c^3
*d^6*f^3*g^3*abs(e) - 9*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^4*e^2*f^3*g^3*abs(e) - 9*sqrt(c*d*f*g - a*e*g^2)*a^2*c
*d^2*e^4*f^3*g^3*abs(e) - sqrt(c*d*f*g - a*e*g^2)*a^3*e^6*f^3*g^3*abs(e) + 3*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^5
*e*f^2*g^4*abs(e) + 9*sqrt(c*d*f*g - a*e*g^2)*a^2*c*d^3*e^3*f^2*g^4*abs(e) + 3*sqrt(c*d*f*g - a*e*g^2)*a^3*d*e
^5*f^2*g^4*abs(e) - 3*sqrt(c*d*f*g - a*e*g^2)*a^2*c*d^4*e^2*f*g^5*abs(e) - 3*sqrt(c*d*f*g - a*e*g^2)*a^3*d^2*e
^4*f*g^5*abs(e) + sqrt(c*d*f*g - a*e*g^2)*a^3*d^3*e^3*g^6*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{(f+g x)^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\sqrt {d+e\,x}}{{\left (f+g\,x\right )}^4\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

[In]

int((d + e*x)^(1/2)/((f + g*x)^4*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int((d + e*x)^(1/2)/((f + g*x)^4*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)